Meme si la所需sité pour la fonction Finance d'adopter des méthodes de travail plus efficaces et dynamiques est antérieure à la pandémie, les événements de 2020 prouvent qu'il s'agit d'un catalyseur notable de transformation technologique. La Finance se dirige donc vers une adoption des technologies digitales, telles que le Machine Learning, à appliquer aux processus fondamentaux.
Les DAFcherchent depuis longtempsà réduire le temps passé sur les processus tels que la clôture, la consolidation, le reporting et la paie. La pandémie du COVID-19 et les changements de modes et de lieux de travail rendent cette évolution incontournable.
Thomas Willman, Principal, Global Practice Leader Finance Advisory chez The Hackett Group, explique : « La fonction Finance a fait l'objet de tant de transformations en 2020. Ce qui n'a pas changé, c'est qu'il reste encore beaucoup à faire ; ce qui a changé, c'est que tout doit être fait loin du bureau. Les professionnels de la Finance cherchent à renforcer l'automatisation et à utiliser le Machine Learning pour identifier des schémas et faire des recommandations qui, précédemment, auraient exigé une intervention manuelle. »
L'automatisation intelligente pour la Finance au quotidien
Entre de bonnes mains, les technologies digitales et une automatisation renforcée peuvent constituer le duo gagnant pour permettre aux DAF de révolutionner la fonction Finance. Cependant, le succès dépendra beaucoup de l'identification et de la hiérarchisation des tâches qui offriront le plus de valeur ajoutée. En matière d'automatisation, le premier objectif de la Finance doit concerner les tâches répétitives et transactionnelles nécessitant une intervention humaine ou manuelle. La fonction gagne ainsi un temps considérable pour se consacrer davantage à son rôle de conseiller stratégique auprès de l'entreprise.
Le second objectif consiste à identifier les situations où les technologies digitales, telles que le Machine Learning, peuvent être utilisées pour détecter, prévoir ou recommander, c'est-à-dire augmenter la contribution de l'intelligence « machine » à une transaction ou un processus. Dès que la machine identifie un schéma, elle peut appliquer encore et toujours le même résultat, tout en continuant d'apprendre et donc de gagner en intelligence.
依照Ainsi associee l 'automatisation, l 'IntelligenceArtificielle crée des processus automatisés de manière intelligente, ce qui permet de gagner du temps jusque-là consacré aux transactions et processus traditionnels. Selon un sondage Workday Adaptive Planning, plus de 40 % des DAF estiment que l'automatisation de leur entreprise est essentiellement guidée par la demande d'informations plus rapides et de meilleure qualité par l'équipe dirigeante et les acteurs impliqués dans les opérations.
D'après les recherches effectuées dans le cadre du rapport d'AccentureCharting a Path to Intelligent Automation, « près des 3/4 des DAF interrogés estiment qu'ils aident à transformer toute l'entreprise, aussi est-il primordial que la fonction Finance soit en mesure de faire le meilleur travail possible. Il est donc essentiel d'élaborer entièrement une stratégie, une méthodologie et un déploiement des outils d'automatisation intelligente dans un contexte de transformation de l'entreprise en général, plutôt que de se focaliser sur un aspect particulier. »
Pour la Finance, bien sûr, tout passe par les chiffres, et dès que l'on aborde l'automatisation en termes de coût et d'efficacité, les chiffres parlent d'eux-mêmes. D'après unwebinar Argylementionné dans CFO Dive, « une entreprise disposant d'une équipe Finance de 20 personnes gaspille de manière générale l'équivalent de 1 920 heures chaque année, soit près de 124 800 $, uniquement en tâches manuelles. Pour une grande entreprise avec une équipe Finance de 100 personnes, ce chiffre s'élève à 9 600 heures, soit 624 000 $ par an. »
Transformer la Finance avec le Machine Learning
Malgré les avantages évidents du Machine Learning au niveau financier et opérationnel, de nombreuses fonctions Finance ont du mal à s'adapter. La comptabilité, la gestion des fournisseurs, les achats, l'audit : autant de secteurs clés prêts pour l'automatisation. Or, le risque encouru peut freiner l'innovation, surtout pour les grandes entreprises opérant dans plusieurs régions. Pour les équipes de chacun de ces secteurs, il s'agit également de garantir la continuité, souvent aux dépens de la transformation.
Le traitement des transactions est un autre obstacle à la transformation et finalement à une collaboration plus efficace. Il n'est donc pas surprenant que ce soit la première étape des DAF en matière d'automatisation.
« L'automatisation permet aux directeurs financiers d'optimiser leur manière de gérer les processus de comptabilité. C'est un domaine qui pose beaucoup de problèmes à la Finance depuis très longtemps et qui peut avoir une influence directe sur le flux de trésorerie de l'entreprise, explique Barbara Larson, General Manager,Workday Financial Management. La Finance passe beaucoup de temps à éplucher manuellement les écritures comptables, les factures et la documentation de toute sorte à la recherche d'erreurs, alors que le Machine Learning pourrait tout automatiser pour rapprocher les paiements et les factures. »
Le Machine Learning peut également réduire le risque financier en signalant les paiements suspects aux fournisseurs en temps réel, pour un processus plus efficace. Les fraudes internes et externes coûtent des milliards de dollars aux entreprises chaque année. Pour les endiguer, le mécanisme actuel consiste généralement à vérifier manuellement un échantillon de factures. En d'autres termes, une fraction seulement du total des paiements est vérifié, ce qui revient à chercher « une aiguille dans une botte de foin ». Le Machine Learning permet d'augmenter considérablement le volume de factures pouvant être examinées et analysées à la recherche de fraudes ou de paiements en double.
« Il est absolument crucial, pour les institutions financières, de s'assurer du respect des réglementations nationales et internationales, en particulier depuis le renforcement des lois sur le blanchiment d'argent et le financement d'activités terroristes »,expliqueDavid Axson, DAF et responsable Stratégies mondiales, chez Accenture Strategy. « Au sein d'une grande banque mondiale, jusqu'à 10 000 membres du personnel devaient identifier des transactions suspectes et des comptes suggérant des activités illégales. Pour les soutenir, la banque a mis en place un système d'Intelligence Artificielle utilisant des algorithmes de Machine Learning pour segmenter les transactions et les comptes, tout en définissant les seuils optimaux pour alerter en cas de situations pouvant nécessiter une enquête approfondie. »
Améliorer l'élaboration budgétaire et l'analyse financière
Si vous aussi, vous estimez que le rôle de l'élaboration budgétaire et de l'analyse financière à l'avenir sera d'appuyer en temps réel la prise de décisions basées sur des données, alors il est clair que la Finance doit faire évoluer ses processus, et c'est là qu'intervient l'automatisation.
Une étude deMcKinseyrévèle qu'en moyenne, environ 60 % des activités financières peuvent être entièrement (40 %) ou majoritairement (17 %) automatisées à l'aide des technologies disponibles aujourd'hui. Même si le pourcentage est encore incertain pour l'élaboration budgétaire et l'analyse financière, cette étude montre que de nombreuses tâches de cette catégorie peuvent être entièrement (11 %) ou majoritairement (45 %) automatisées.
不能忘记做guere de我们常识assistons一个transition entre une culture de l'élaboration budgétaire et l'analyse financière basée sur les feuilles de calcul et une approche beaucoup plus collaborative, basée sur l'automatisation. Il est difficile de savoir précisément à quel stade de cette transition nous nous trouvons, mais le simple fait de vouloir passer d'une Finance basée sur les feuilles de calcul à une Finance basée sur l'Analytics et la technologie n'en constitue pas moins une révolution. D'après un sondage CFO Insights, 78 % des DAF interrogés estimaient que les compétences sur Microsoft Excel® étaient extrêmement importantes il y a 2 ans ; ils ne sont plus que 5 % aujourd'hui. L'automatisation des applications, désormais disponible pour les professionnels de la Finance, est la première étape de ce changement.